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Abstract

This paper deals with an approach to automatic language identification based on rhythmic modelling. Beside pho-

netics and phonotactics, rhythm is actually one of the most promising features to be considered for language identifi-

cation, even if its extraction and modelling are not a straightforward issue. Actually, one of the main problems to

address is what to model. In this paper, an algorithm of rhythm extraction is described: using a vowel detection algo-

rithm, rhythmic units related to syllables are segmented. Several parameters are extracted (consonantal and vowel dura-

tion, cluster complexity) and modelled with a Gaussian Mixture. Experiments are performed on read speech for seven

languages (English, French, German, Italian, Japanese, Mandarin and Spanish) and results reach up to 86 ± 6% of cor-

rect discrimination between stress-timed mora-timed and syllable-timed classes of languages, and to 67 ± 8% of correct

language identification on average for the seven languages with utterances of 21 s. These results are commented and

compared with those obtained with a standard acoustic Gaussian mixture modelling approach (88 ± 5% of correct iden-

tification for the seven languages identification task).
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1. Introduction

Automatic language identification (ALI) has

been studied for almost 30 years, but the first

competitive systems appeared during the 90s.
This recent attention is related to (1) the need

for Human–Computer Interfaces and (2) the
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1 Language discrimination refers to determining to which of

two candidate languages L1–L2 an unknown utterance belongs

to. Language identification denotes more complex tasks where

the number of candidate languages is more than two.
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remarkable expansion of multilingual exchanges.

Indeed, in the so-called information society, the

stakes of ALI are numerous, both for multilingual

Human–Computer Interfaces (Interactive Informa-

tion Terminal, Speech dictation, etc.) and for
Computer-Assisted Communication (Emergency

Service, Phone routing services, etc.). Moreover,

accessing the overwhelming amount of numeric

audio (or multimedia) data available may take

advantage from content-based indexing that may

include information about the speakers� languages
or dialects. Besides, linguistic issues may also be ad-

dressed: the notion of linguistic distance has been
implicitly present in linguistics typology for almost

a century. However, it is still difficult to define, and

ALI systems may shed a different light on this

notion since correlating automatic, perceptual and

linguistic distances may lead to a renewal of the

typologies and to a better understanding of the

close notions of languages and dialects.

At present, state-of-the-art approaches consider
phonetic models as front-end providing sequences

of discrete phonetic units decoded later in the

system, according to language-specific statistical

grammars (see Zissman and Berkling, 2001 for a

review). The recent NIST 2003 Language Recogni-

tion Evaluation (Martin and Przybocki, 2003) has

confirmed that this approach is quite effective since

the error rate obtained on a language verification
task using a set of 12 languages is under 3% for

30-s utterances (Gauvain et al., 2004). However,

other systems modelling global acoustic properties

of the languages are also very efficient, and yield

about 5% error on the same task (Singer et al.,

2003). These systems, that take advantage either

of speech or speaker recognition techniques, per-

form quite well. Still, very few systems are trying
to use other approaches (e.g. prosodics) and

results are much poorer than those obtained with

the phonetic approach (for example the combina-

tion of the standard OGI ‘‘temporal dynamics’’

system based on a n-gram modelling of sequences

of segments labelled according their F0 and energy

curves yields about 15–20% of equal error rate

with three languages of the NIST 2003 campaign
task and corpus (Adami and Hermansky, 2003)).

However, these alternative approaches may lead

to improvements, in terms of robustness in noisy
conditions, number of languages recognized or lin-

guistic typology. Further research efforts have to

be made to overcome the limitations and to assess

the contributions of those alternative approaches.

The motivations of this work are given in Sec-
tion 2. One of the most important is that prosodic

features carry a substantial part of the language

identity that may be sufficient for humans to per-

ceptually identify some languages (see Section

2.2). Among these supra-segmental features,

rhythm is very promising both for linguistic and

automatic processing purposes (Section 2). How-

ever, coping with rhythm is a tricky issue, both
in terms of theoretical definition and automatic

processing (Section 3). For these reasons, the few

previous experiments which aimed at language rec-

ognition using rhythm were based on hand-

labelled data and/or have involved only tasks of

language discrimination1 (Thymé-Gobbel and

Hutchins, 1999; Dominey and Ramus, 2000). This

paper addresses the issue of automatic rhythm
modelling with an approach that requires no pho-

netically labelled data (Section 4). Using a vowel

detection algorithm, rhythmic units somewhat

similar to syllables and called pseudo-syllables are

segmented. For each unit, several parameters are

extracted (consonantal and vowel duration, cluster

complexity) and modelled with a Gaussian Mix-

ture. This approach is applied to seven languages
(English, French, German, Italian Japanese, Man-

darin and Spanish) using the MULTEXT corpus

of read speech. Descriptive statistics on pseudo-

syllables are computed and the relevancy of this

modelling is assessed with two experiments aiming

at (1) discriminating languages according to their

rhythmic classes (stress-timed vs. mora-timed vs.

syllable-timed) and (2) identifying the seven lan-
guages. This rhythmic approach is then compared

to a more standard acoustic approach (Section 5).

From a theoretical point of view, the proposed

system focuses on the existence and the modelling

of rhythmic units. This approach generates a type

of segmentation that is closely related to a syllabic
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parsing of the utterances. It leaves aside other

components of rhythm related to the sequences

of rhythmic units or that span over whole utter-

ances. These considerations are discussed in

Section 6.
2 See Levelt and Wheeldon (1994) for his model of speech

production (see also Boysson-Bardies et al., 1992; Mehler et al.,

1996; Weissenborn and Höhle, 2001; Nazzi and Ramus, 2003

for the role of rhythm in early acquisition of language).
2. Motivations

Rhythm is involved in many processes of the

speech communication. Though it has been ne-

glected for long, several considerations lead to

reconsider its role both in understanding and pro-
duction processes (Section 2.1), and especially in a

language identification framework (Section 2.2).

Moreover, researchers have tried to take rhythm

into consideration for automatic processing pur-

poses for a while, both in speech synthesis and rec-

ognition tasks, leading to several rhythm-oriented

approaches (Section 2.3). All these considerations

emphasize both the potential use of an efficient
rhythm model and the difficulty to elaborate it. It

leads us to focus on the possible use of rhythmic

features for ALI (Sections 3 and 4).

2.1. Linguistic definition and functions of rhythm

Rhythm is a complex phenomenon that has

long been said to be a consequence of other char-
acteristics of speech (phonemes, syntax, intona-

tion, etc.). However, an impressive amount of

experiments tends to prove that its role may be

much more than a mere side effect in the speech

communicative process.

According to the Frame/Content theory (Mac-

Neilage, 1998; MacNeilage and Davis, 2000),

speech production is based on superimposing a
segmental content into a cyclical frame. From an

evolutionary point of view, this cycle probably

evolved from the ingestive mechanical cycles

shared by mammals (e.g. chewing) via intermedi-

ate states including visuofacial communication

controlled at least by a mandibular movement (lip-

smacks, etc.). Moreover, the authors shed light on

the status of the syllable both as an interface be-
tween segments and suprasegmentals and as the

frame, a central concept in their theory: convolut-

ing the mandibular cycle with a basic voicing pro-
duction mechanism results in a sequence of CV

syllables composed of a closure and a neutral

vowel. Additional experiments on serial ordering

errors made by adults or children (e.g. Fromkin,

1973; Berg, 1992) and child babbling (MacNeilage
et al., 2000; Kern et al., in press) are also compat-

ible with the idea that the mandibular oscillation

provides a rhythmic baseline in which segments

accurately controlled by articulators take place.

A huge amount of psycholinguistics studies also

draw attention to the importance of the rhythmic

units in the complex process of language compre-

hension. Most of them consider that a rhythmic
unit—roughly corresponding to the syllable com-

bined with an optional stress pattern—plays an

important role as an intermediate level of percep-

tion between the acoustic signal and the word

level. The exact role of these syllables or syllable-

sized units has still to be clearly identified: whether

the important feature is the unit itself (as a recod-

ing unit) or its boundaries (as milestones for the
segmentation process) is still in debate. The ones

claim that the syllable is the main unit in which

the phonetic recoding is performed before lexical

access (Mehler et al., 1981). The others propose

an alternative hypothesis in which syllables and/

or stress provide milestones to parse the acoustic

signal into chunks that are correctly aligned with

the lexical units (Cutler and Norris, 1988). In this
last framework, the boundaries are more salient

than the content itself, and no additional hypoth-

esis is made on the size of the units actually used

for lexical mapping. Furthermore, recent experi-

ments point out that the main process may consist

in locating the onset rather than raw boundary

detection (Content et al., 2000, 2001).

These studies show that rhythm plays a key role
in the speech communication process. Similarly,

several complementary aspects could have been

mentioned but they are beyond the scope of this

paper.2 However, several questions regarding the

nature of the rhythm phenomenon are still open.

First of all and as far as the authors know, an
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uncontroversial definition of rhythm does not exist

yet even if most researchers may agree on the no-

tion that speech rhythm is related to the existence

of a detectable phenomenon that occurs evenly in

speech. Crystal proposes to precisely define
rhythm as ‘‘the regular perception of prominent

units in speech’’ (Crystal, 1990). We prefer not to

use the concepts of perception and unit because

they narrow the rhythmic phenomenon with a

priori hypotheses: according to Crystal�s defini-
tion, rhythm can be considered as the alternation

of prominent units with less prominent ones, but

defining those units is far from straightforward;
The alternation of stressed/unstressed syllables

results in one kind of rhythm, but the voiced/

unvoiced sound sequences may produce another

type of rhythm, and so do consonant/vowel alter-

nations or short/long sound sequences, etc. More-

over, rhythm may arise from the even occurrence

of punctual events and not units (like beats super-

imposed on other instruments in music).
Another question concerns the actual role of the

syllable. Whether it is a cognitive unit or not is still

in debate. Though, several experiments and mea-

sures indicate that syllables or syllable-sized units

are remarkably salient and may exhibit specific

acoustic characteristics. Since the early 1970s, sev-

eral experiments have indicated that the human

auditory system is especially sensitive to time inter-
vals spanning from 150 to 300 ms clearly compat-

ible with average syllable duration.3 These

experiments, based on various protocols (forward

and backward masking effect, ear switching

speech, shadowing repetition, etc.) showed that

this duration roughly corresponds to the size of a

human perceptual buffer (see for example Mass-

aro, 1972; Jestead et al., 1982; O�Shaugnessy,
1987). More recently, experiments performed with

manipulated spectral envelopes of speech signals

showed the salience of the modulation frequencies

between 4 and 6 Hz in perception (Drullman et al.,

1994). Hence, all these findings support the sylla-

ble as a relevant rhythmic unit. In addition, acous-

tic measurements made on a corpus of English
3 Greenberg (1998) reports a mean duration of 200 ms for

spontaneous discourse on the Switchboard English database.
spontaneous speech emphasize also its prominence

(Greenberg, 1996, 1998). This study showed that,

as far as spectral characteristics are concerned, syl-

lable onsets are in general less variable than nuclei

or codas. It also highlights that co-articulation ef-
fects are much larger within each syllable than be-

tween syllables. Both effects result in the fact that

syllable onsets vary less than other parts of the sig-

nal and consequently may provide at least reliable

anchors for lexical decoding. Besides this search

for the intrinsic nature of rhythm, perceptual stud-

ies may also improve our knowledge of its intrinsic

structure. Using speech synthesis to simulate
speech production, Zellner-Keller (2002) con-

cluded that rhythm structure results from a kind

of convolution of a temporal skeleton with several

layers, from segmental to phrasal, in a complex

manner that can be partially predicted.

One of the main conclusions is that temporal

intervals ranging from 150 to 300 ms are involved

in speech communication as a relevant level of
processing. Moreover, many cues draw attention

to this intermediate level between acoustic signal

and high level tiers (syntax, lexicon). At this mo-

ment, it is not evident to assess if the relevant fea-

ture is actually a rhythmic unit by itself or a

rhythmic beat. However syllable-sized units are

salient from a perceptual point of view and may

have acoustic correlates that facilitate their auto-
matic extraction. Next section deals with the

experimental assessment of these correlates in per-

ceptive language identification tasks.

2.2. Rhythm and perceptual language

identification

Language identification is an uncommon task
for many adult human speakers. It can be viewed

as an entertaining activity by the most questioning

ones but most adult human beings living in a

monolingual country may consider that it is of no

interest. However, the situation is quite different

in multilingual countries where numerous lan-

guages or dialects may be spoken on a narrow geo-

graphical area. Furthermore, perceptual language
identification is an essential challenge for children

who acquire language(s) in that kind of multilin-

gual context: it is then utterly important for them
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to distinguish which language is spoken in order to

acquire the right language-dependent phonology,

syntax, and lexicon. During the last two decades,

several experiments have investigated the efficiency

of the human being as a language recognizer (see
Barkat-Defradas et al., 2003, for a review). Three

major types of features may help someone to iden-

tify a language: (1) segmental features (the acoustic

properties of phonemes and their frequency of

occurrence), (2) supra-segmental features (phono-

tactics, prosody), and (3) high level features (lexi-

con, morpho-syntax). The exact use made of each

set of features is unclear yet and it may actually dif-
fer between newborn children and adults.

For example, several experiments have proved

that newborns, as early as the very first days, are

able to discriminate between their mother tongue

and some foreign languages that exhibit differences

at the supra-segmental level (see Ramus, 2002a,b,

for a review). Whether newborns take advantage

from rhythm alone or from both rhythm and into-
nation is an open issue. It is likely that both levels

provide cues that are weighted as function of the

experimental conditions (languages, noise, and

speech rate) and maybe according to individual

strategies. Assessing these adult human capacities

to identify foreign languages is a complex chal-

lenge since numerous parameters may influence

this ability. Among them, the subject�s mother ton-
gue and his personal linguistic history seem to be

key factors that prove difficult to quantify. Since

the end of the 1960s, quite a few studies have tack-

led this question. Depending on whether they are

implemented by automatic speech processing

researchers or linguists, the purposes differ. The

former intend to use these perceptual experiments

as benchmarks for ALI systems, while the latter
investigate the cognitive process of human percep-

tion. More recently, this kind of experiments has

been viewed as a way to investigate the notion of

perceptual distance among languages. In this

framework, the aim is to evaluate the influence

of the different levels of linguistic description in

the cognitive judgment of language proximity.

From a general point of view all these experi-
ments have shown the noteworthy capacity of

human subjects to identify foreign languages after

a short period of exposure. For example, one of
the experiments reported by Muthusamy et al.

(1994) indicates that native English subjects reach

a score of 54.2% of correct answers when identify-

ing 6-s excerpts pronounced in nine foreign lan-

guages. Performances varied significantly from
one language to another, ranging from 26.7% of

recognition for Korean to 86.4% of recognition

for Spanish. Additionally, subjects were asked to

explain which cues they had considered to make

their decision. Their answers revealed the use of

segmental features (manner and place of articula-

tion, presence of nasal vowels, etc.), supra-segmen-

tals (rhythm, intonation, tones) and ‘‘lexical’’ cues
(iteration of the same words or pseudo-words).

However these experiments raise numerous ques-

tions about the factors influencing the recognition

capacity of the subjects: the number of languages

that they have been exposed to, the duration of

the experimental training, etc. Following Muthus-

amy, several researchers have tried to quantify

these effects. Stockmal, Bond and their colleagues
(Stockmal et al., 1996; Stockmal et al., 2000; Bond

and Stockmal, 2002) have investigated several so-

cio-linguistic factors (geographical origin of the

speakers, languages known by the subjects, etc.)

and linguistic factors (especially rhythmic charac-

teristics of languages). In a similar task based on

the identification of Arabic dialects our group

has shed light on the correlation between the struc-
ture of the vocalic system of the dialects and the

perceptual distances estimated from the subjects�
answers (Barkat-Defradas et al., 2003). The results

reported by (Vasilescu et al., 2000) in an experi-

ment of discrimination between romance lan-

guages may be interpreted in a similar way.

Other studies focus on the salience of supra-seg-

mentals in perceptual language identification.
From the first experiments of Ohala and Gilbert

(1979) to the recent investigations of Ramus, using

both natural and synthesized speech, they prove

that listeners may rely on phonotactics, rhythm,

and intonation patterns to distinguish or identify

languages, even if segmental information is

lacking.

Even if the cognitive process leading to lan-
guage identification is multistream (from segmen-

tal acoustics to suprasegmentals and higher level

cues), no model of integration has been derived
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yet. Moreover, building such a model seems to be

still out of range since even the individual mecha-

nisms of perception at each level are still puzzling.

At the segmental level, most researchers are

working with reference to the motor theory of
speech perception (Liberman and Mattingly,

1985) searching arguments that would either con-

firm or invalidate it. At the suprasegmental level,

the perception of rhythm has been mainly studied

from a musical point of view, even if comparisons

between music and speech perception are also

studied (e.g. Todd and Brown, 1994; Besson and

Schön, 2001) and if technological applications
(e.g. speech synthesis) have lead researchers to

evaluate rhythm (see next section).

2.3. Rhythm and syllable-oriented automatic

speech processing

Many studies aiming at taking advantage from

rhythmic and prosodic features for automatic sys-
tems have been developed through the last decades

and achieved most of the time disappointing

results. Nevertheless several authors consider that

this is a consequence of the difficulty to model

suprasegmental information and put forward the

major role of prosody and temporal aspects in

speech communication processes (see for example

Zellner-Keller and Keller, 2001 for speech synthe-
sis and Taylor et al., 1997 for speech recognition).

Beside its role in the parsing of sentence into

words (Cutler and Norris, 1988; Cutler, 1996),

prosody constitutes sometimes the only means to

disambiguate sentences, and it often carries addi-

tional information (mood of the speaker, etc.).

Even when focusing on the acoustic–phonetic

decoding, suprasegmentals may be relevant at
two levels: first of all, segmental and suprasegmen-

tal features are not independent, and thus, the

suprasegmental level may help to disambiguate

the segmental level (e.g. see the correlation be-

tween stress accent and pronunciation variation

in American English (Greenberg et al., 2002)).

Moreover, as it has been argued above, supraseg-

mentals and especially rhythm, may be a salient
level of treatment as itself for humans and proba-

bly for computational models. Speech synthesis is

an evident domain where perceptual experiments
have shown the interest of syllable-length units

for the naturalness of synthesized speech (Keller

and Zellner, 1997). Additionally, rhythm and

rhythmic units may play a major role in Automatic

Speech Recognition: from the proposal of the syl-
lable as a unit for speech recognition (Fujimura,

1975) to the summer workshop on ‘‘Syllable Based

Speech Recognition’’ sponsored by the Johns

Hopkins University (Ganapathiraju, 1999), at-

tempts to use rhythmic units in automatic speech

recognition and understanding have been numer-

ous. Disappointingly, most of them failed to im-

prove the standard speech recognition approach
based on context-dependent phone modelling

(for a review, see Wu, 1998). However, the defini-

tive conclusion is not that suprasegmentals are

useless, but instead, that the phonemic level may

not be the suitable time scale to integrate them

and that larger scales may be more efficient. We

have already mentioned that co-articulation effects

are much greater within each syllable than between

syllables in a given corpus of American English

spontaneous speech (Greenberg, 1996). Context-

dependent phones are well-known to efficiently

handle this co-articulation. However, their train-

ing needs a big amount of data, and consequently

they cannot be used when few data are available

(this happens especially in multilingual situations):

the state-of-the-art systems of ALI are based on
context-independent phones (Singer et al., 2003;

Gauvain et al., 2004). Thus, syllable-sized models

are a promising alternative with limited variability

at the boundaries. However, several unsolved

problems limit the performance of the current syl-

lable-based recognition systems and the main

problem may be that syllable boundaries are not

easy to identify, especially in spontaneous speech
(e.g. Content et al., 2000 for a discussion on ambi-

syllabicity and resyllabification). Thus, combining

phoneme-oriented and syllable-oriented models

in order to take several time scales into account

may be a successful approach to overcome the spe-

cific limits of each scale (Wu, 1998). Finally, sylla-

ble-oriented studies are less common in the fields

of speaker and language identification. Among
them, we can however distinguish approaches

adapted from standard phonetic or phonotactic

approaches to syllable-sized units (Li, 1994 and
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more recently Antoine et al., 2004 for a ‘‘syllabo-

tactic’’ approach and Nagarajan and Murthy,

2004 for a syllabic Hidden Markov Modelling)

from those trying to model the underlying rhyth-

mic structure (see Section 4.1).
This section showed that: (1) Rhythm is an

important mechanism of speech communication

involved in comprehension and production pro-

cesses; (2) It is difficult to define, to handle, and

most of all, to efficiently model; (3) Syllable or syl-

lable-like units may play an important role in the

structure of rhythm. Furthermore, experiments re-

ported above clearly demonstrate that different
languages may be different from the rhythmic

perspective and that these differences may be per-

ceived and used in a perceptual language iden-

tification task. Next section deals with these

differences, both in terms of linguistic diversity

and its underlying acoustic parameters.
3. The rhythm typology and its acoustic correlates

Languages can be labelled according to a

rhythm typology proposed by linguists. However,

rhythm is complex and some languages do not per-

fectly match this typology and the search for

acoustic correlates has been proposed to evaluate

this linguistic classification.
Experiments reported here focus on five Euro-

pean languages (English, French, German, Italian

and Spanish) and two Asian languages (Mandarin

and Japanese). According to the linguistic litera-

ture, French, Spanish and Italian are syllable-

timed languages while English and German are

stress-timed languages. Regarding Mandarin, clas-

sification is not definitive but recent works tend to
affirm that it is a stress-timed language (Komatsu

et al., 2004). The case of Japanese is different since

it is the prototype of a third rhythmic class, namely

the mora-timed languages for which timing is re-

lated to the frequency of morae.4 These three cat-

egories are related to the notion of isochrony and
4 Morae can consist of a V, CV or C. For instance,

[kakemono] (scroll) and [nippoN] (Japan) must both be divided

in four morae: [ka ke mo no] and [ni p po N] (Ladefoged, 1975,

p. 224).
they emerged from the theory of rhythm classes

introduced by Pike, developed by Abercrombie

(1967) and enhanced with mora-timed class by

Ladefoged (1975). More recent works, based on

the measurement of the duration of inter-stress
intervals in both stress-timed and syllable-timed

languages provide an alternative framework in

which these discrete categories are replaced by a

continuum (Dauer, 1983) where rhythmic differ-

ences among languages are mostly related to their

syllable structure and the presence (or absence) of

vowel reduction.

The syllable structure is closely related to the
phonotactics and to the accentuation strategy of

the language. While some languages will allow

only simple syllabic patterns (CV or CVC), other

will permit much more complex structures for

the onset, the coda or both (e.g. syllables with up

to six consonants in the coda5 are encountered in

German). Table 1, adapted from (Greenberg,

1998) displays a comparison of the syllabic forms
from spontaneous speech corpora in Japanese

and American English.

The most striking statement is that in both lan-

guages, the CV and CVC forms stand for nearly

70% of the encountered syllables. However, the

other forms reveal significant differences in the

syllabic structure. On the one hand, consonantal

clusters are rather common in American English
(11.7% of the syllables) while they are almost

absent from the Japanese corpus. On the other

hand, VV transitions are present in 14.8% of the

Japanese syllables while they could only occur by

resyllabification at word boundaries in English.

These observations roughly correspond with our

knowledge of the phonological structure of the

words in those two languages. However, the nat-
ure of the corpora (spontaneous speech) widely

influences the relative distribution of each struc-

ture. With read speech (narrative texts), Delattre

and Olsen (1969) found fairly different patterns

for British English: CVC (30.1%), CV (29.7%),

VC (12.6%), V (7.4%) and CVCC (7%). CCV that

occurs 5.1% in the Switchboard corpus represents
5 For instance, ‘‘you shrink it’’ will be translated du

schrumpfst’s [du Sr mpfsts]. This example is taken from

(Möbius, 1998).



Table 1

The 10 most common syllabic forms and their frequency of

occurrence in Japanese and English

Japanese English

Form % of occurrence Form % of occurrence

CV 60.4 CV 47.2

CVC 17.9 CVC 22.1

CVV 11.7 V 11.2

V 2.9 CCV 5.1

CCV 1.7 VC 4.8

CVVC 1.3 CVVC 2.9

CCVV 1.3 CCVC 2.5

VC 1.2 VCC 0.5

VV 0.5 CCVCC 0.4

CCVC 0.4 CCCV 0.3

Other 0.7 Other 3.0

Frequencies are computed on two spontaneous speech corpora.

Form in bold are encountered in both languages (adapted from

Greenberg, 1998).
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only 0.49% of the syllables in the Delattre and

Olson corpus. However, statistics calculated on the

Switchboard corpus show that 5000 different sylla-

bles are necessary to cover 95% of the vocabulary6

(Greenberg, 1997) and thus that inter-language

differences are not restricted to high-frequency

syllabic structures. These broad phonotactic differ-

ences explain at least partially the mora-time vs.
stress-time opposition. Still, studying the temporal

properties of languages is necessary to determine

whether the rhythm is totally characterized by

syllable structures or not.

Beyond the debate on the existence of rhythmic

classes (opposed to a rhythmic continuum), the

measurement of the acoustic correlates of rhythm

is essential for automatic language identification
systems based on rhythm. The first statistics made

by Ramus, Nespor and Mehler with an ad hoc

multilingual corpus of eight languages led to a re-

newal of interest for these studies (Ramus et al.,

1999). Following Dauer, they searched for dura-

tion measurements that could be correlated with

vowel reduction (resulting in a wide range of dura-

tion for vowels) and with the syllable structure.
They came up with two reliable parameters: (1)
6 This number falls to 2000 syllables necessary to cover 95%

of the corpus (i.e. taking into account the frequency of

occurrence of each word of the vocabulary).
the percentage of vocalic duration %V and (2)

the standard deviation of the duration of the con-

sonant intervals DC both estimated over a whole
utterance. They provided a 2-dimension space in

which languages are clustered according to their
rhythm class.7 These results are very promising

and prove that in nearly ideal conditions (manual

labelling, homogeneous speech rates, etc.), it is

possible to find acoustic parameters that cluster

languages into explainable categories. The exten-

sion of this approach to ALI necessitates the eval-

uation of these parameters with more languages

and less constrained conditions. This raises several
problems that can be summarized as follows:

– Adding speakers and languages will add inter-

speaker variability. Would it result in an over-

lap of the language-specific distributions?

– Which part of the duration variation observed

in rhythmic unit is due to language-specific

rhythm and which part is related to speaker-
specific speech rate?

– Is it possible to take these acoustic correlates

into account for ALI?

A recent study (Grabe and Low, 2002) answers

partially to the first question. Considering 18 lan-

guages and relaxing constraints on the speech rate,

Grabe and Low have found that the studied lan-
guages spread widely without visible clustering ef-

fect in a 2-dimension space somewhat related to

the %V/DC space. However, in their study, each
language is represented by only 1 speaker, which

prevents from drawing definite conclusion on the

discrete or continuous nature of the rhythm space.

Addressing the variability issue between speakers,

dialects and languages, similar experiments focus-
ing on dialects are in progress in our group

(Hamdi et al., 2004; Ferragne and Pellegrino,

2004). Though it is beyond the scope of this paper,

the second question is essential. Speech rate in-

volves computing a number of certain units per

second; choosing the appropriate unit(s) remains

controversial (syllable, phoneme or morpheme)
7 Actually, the clustering seems to be maximum along one

dimension derived from a linear combination of DC and %V.
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and so is the interpretation of the measured rate:

few units per second means long units, but does

it mean that the units are intrinsically long or is

the speaker an especially slow speaker? Moreover,

the variation of speech rate within an utterance is
also relevant: the speaking rate of a hesitating

speaker may switch from local high values to very

low values during disfluencies (silent or filled

pauses, etc.) along a single utterance. Conse-

quently, fast variations may be masked according

to the time span used for the estimation and the

overall speech rate estimation may not be relevant.

Besides, the estimation of speech rate is also rele-
vant for automatic speech recognition, since recog-

nizers� performances usually decrease when they
come to dealing with especially fast or slow speak-

ers (Mirghafori et al., 1995). For this reason, algo-

rithms exist to estimate either phone rate or

syllable rate (e.g. Verhasselt and Martens, 1996;

Pfau and Ruske, 1998). However, the subsequent

normalization is always applied in a monolingual
context, and no risk of masking language specific

variation can occur. At present, the effect of this

kind of normalization in a multilingual framework

has not been studied extensively though it will be

essential for ALI purposes. Our group has else-

where addressed this issue in a study of inter-lan-

guages differences of speech rate in terms either

of syllables per second or phonemes per second
(Pellegrino et al., 2004; Rouas et al., 2004).

The last question is the main issue addressed in

this paper. This section assesses the existence of

acoustic correlates of the linguistic rhythmic struc-

ture. However, whether they are detectable and

reliable enough to perform ALI or not is to be

tackle. The following sections thoroughly focus

on this issue.
4. Rhythm modelling for ALI

4.1. Overview of related works

The controversies about the status of rhythm

illustrate the difficulty to segment speech into
meaningful rhythmic units and emphasize that a

global multilingual model of rhythm is a long
range challenge. As a matter of fact, even if corre-

lates between speech signal and linguistic rhythm

exist, developing a relevant representation of it

and selecting an appropriate modelling paradigm

is still at stakes.
Among others, Thymé-Gobbel and Hutchins

(1999) have emphasized the importance of

rhythmic information in language identification

systems. They developed a system based on likeli-

hood ratio computation from the statistical distri-

bution of numerous parameters related to rhythm

and based on syllable timing, syllable duration and

amplitude (224 parameters are considered). They
obtained significant results, and proved that mere

prosodic cues can distinguish between some lan-

guage pairs of the telephone speech OGI-MLTS

corpus with results comparable to some non-pro-

sodic systems (depending on the language pairs,

correct discrimination rates range from chance to

93%). Cummins et al. (1999) have combined the

delta-F0 curve and the first difference of the
band-limited amplitude envelope with neural net-

work models. The experiments were also con-

ducted on the OGI-MLTS corpus, using pairwise

language discrimination for which they obtained

up to 70% of correct identification. The conclusions

were that F0 was a more effective discriminant var-

iable than the amplitude envelope modulation and

that discrimination is better across prosodic family
languages than in the same family.

Ramus and colleagues have proposed several

studies (Ramus et al., 1999; Ramus and Mehler,

1999; Ramus, 2002a,b) based on the use of rhythm

for language identification. This approach has been

furthermore implemented in a semi-automatic

modelling task (Dominey and Ramus, 2000). Their

experiment aimed at assessing whether an artificial
neural network may extract rhythm characteristics

from sentencesmanually labelled in terms of conso-

nants and vowels or not. Using the RMN ‘‘Ramus,

Nespor, Mehler’’ corpus (1999), they reached sig-

nificant discrimination results between languages

belonging to different rhythm categories (78%

for English/Japanese pair) and chance level for

languages belonging to the same rhythm cate-
gory. They concluded that those consonant/vowel

sequences carry a significant part of the rhythmic
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Fig. 1. Synopsis of the implemented system.
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patterns of the languages and that they can be

modelled. Interestingly, Galves et al. (2002) have

reached similar results with no need for hand label-

ling: Using the RMN data, they automatically de-

rived two criteria from a sonority factor. These
two criteria (the mean value S and the mean value
of the derivate dS of the sonority factor S) lead to a
clustering of the languages closely related to the

one obtained by Ramus and colleagues. Moreover,

dS exhibits a linear correlation with DC and S is
correlated to %V, tending to prove the consistency

between the two approaches.

This quick overview of the rhythmic approaches
to automatic language identification shows that

several approaches, directly exploiting acoustic

parameters without explicit unit modelling (e.g.

Hidden Markov Model), may significantly dis-

criminate some language pairs. Consequently,

rhythm may be relevant for automatic discrimina-

tion or identification of the rhythm category of

several languages. However, the fact that all these
automatic systems exhibit results from ‘‘simple’’

pairwise discrimination emphasizes that using

rhythm in a more complex identification task (with

more than two languages) is not straightforward.

4.2. Rhythm unit modelling

The main purpose of this study is to provide an
automatic segmentation of the signal into rhyth-

mic units relevant for the identification of lan-

guages and to model their temporal properties in

an efficient way. To this end, we use an algorithm

formerly designed to model vowel systems in a lan-

guage identification task (Pellegrino and André-

Obrecht, 2000). The main features of this system

are reviewed hereunder. This model does not pre-
tend to integrate all the complex properties of lin-

guistic rhythm and more specifically, hence it

provides by no way a linguistic analysis of the pro-

sodic systems of languages; the temporal proper-

ties observed and statistically modelled result

from the interaction of several suprasegmental

properties and an accurate analysis of this interac-

tion is not yet possible.
Fig. 1 displays the synopsis of the system. A

language-independent processing parses the signal
into vowel and non-vowel segments. Parameters

related to the temporal structure of the rhythm

units are then computed and language-specific

rhythmic models are estimated. During the test

phase, the same processing is performed and the

most likely language is determined following the

Maximum Likelihood rule (see Section 5.2 for
more details).

In order to extract features related to the poten-

tial consonant cluster (number and duration of

consonants), a statistical segmentation based on

the ‘‘Forward–Backward Divergence’’ algorithm

is applied. Interested readers are referred to

(André-Obrecht, 1988) for a comprehensive and

detailed description of this algorithm. It identifies
boundaries corresponding with abrupt changes in

the wave spectrum resulting in two main categories

of segments: short segments (bursts, but also tran-

sient parts of voiced sounds) and longer segments

(steady parts of sounds).

A segmental speech activity detection (SAD)

is performed to discard long pauses (not related

to rhythm), and, finally, the vowel detection



Table 2

Comparison of different algorithms of vowel detection

Reference Corpus Language VER (%)

Pfitzinger et al.

(1996)a
PhonDatII

(read speech)

German 12.9

Verbmobil

(spontaneous

speech)

German 21.0

Fakotakis et al.

(1997)

TIMIT

(read speech)

English 32.0

Pfau and Ruske

(1998)

Verbmobil

(spontaneous

speech)

German 22.7

Howitt (2000) TIMIT

(read

speech)

English 29.5

Pellegrino and

André-Obrecht

(2000)

OGI MLTS

(spontaneous

speech)

French 19.5

Japanese 16.3

Korean 28.5

Spanish 19.2

Vietnamese 31.1

Average 22.9

The formula of the vowel error rate (VER) is given in the text of

the paper.
a In this study, the error rate is estimated according to syllable

nuclei and not explicitly vowels.
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algorithm locates sounds matching a vocalic struc-

ture via a spectral analysis of the signal. The SAD

detects the less intense segment of the utterance (in

term of energy) and the others segments are classi-

fied as Silence or Speech according to an adaptive
threshold; Vowel detection is based on a dynamic

spectral analysis of the signal in Mel frequency fil-

ters (both algorithms are detailed in (Pellegrino

and André-Obrecht, 2000)). An example of the

vowel/non-vowel parsing is provided in Fig. 2

(vertical lines).

The algorithm is applied in a language- and

speaker-independent way without any manual
adaptation phase. It is evaluated with the vowel

error rate metric (VER) defined as follows:

VER ¼ 100 � N del þ N ins

N vow

� �
% ð1Þ

where Ndel and Nins are respectively the number of

deleted vowels and inserted vowels, and Nvow is the

actual number of vowels in the corpus.

Table 2 displays the performance of the algo-

rithm for spontaneous speech, compared to other

systems. The average value reached on five
languages (22.9% of VER) is as good as the best

systems optimized for a given language. The algo-

rithm may be expected to perform better with read

speech. However, no phonetically hand-labelled

multilingual corpus of read speech was available

to the authors to confirm this assumption.

The processing provides a segmentation of the

speech signal in pause, non-vowel and vowel seg-
ments (see Fig. 2). Due to the intrinsic properties

of the algorithm (and especially the fact that tran-

sient and steady parts of a phoneme may be sepa-
Fig. 2. Example of the automatic vowel/non-vowel labelling. The utte

tier gives the phonetic transcription. The second tier displays the result

and black = vowel). Vertical lines displays the result of the a priori se
rated), it is somewhat incorrect to consider that

this segmentation is exactly a consonant/vowel

segmentation since by nature, segments are shorter

than phonemes. More specifically, vowel duration

is on average underestimated since attacks and

damping are often segmented as transient seg-

ments. Fig. 2 displays also examples of over-seg-

mentation problems with consonants: the final
/fnc/ sequence is segmented into eight segments
rance is ‘‘I have a problem with my water softener . . .’’. The first

of the automatic algorithm (white = pause; dashed = non-vowel

gmentation.



J.-L. Rouas et al. / Speech Communication 47 (2005) 436–456 447
(four for the consonantal cluster, one for the vowel

steady part and three for the final damping). How-

ever, our hypothesis is that this sequence is signif-

icantly correlated to the rhythmic structure of the

speech sound; and the correlation already men-
tioned between actual syllabic rhythm and its esti-

mation using vowel detection (Pellegrino et al.,

2004) confirms this. Our assumption is that this

correlation enables a statistical model to discrimi-

nate languages according to their rhythmic

structure.

Even if the optimal rhythmic units may be lan-

guage-specific (syllable, mora, etc.), the syllable
may be considered as a good compromise. How-

ever, the segmentation of speech into syllables

seems to be a language-specific mechanism even

if universal rules related to sonority and if acoustic

correlates of the syllable boundaries exist (see

Content et al., 2000). Thus no language-indepen-

dent algorithm can be derived at this moment,

and even language-specific algorithms are uncom-
mon (Kopecek, 1999; Shastri et al., 1999).

For these reasons, we introduce the notion of

pseudo-syllables (PS) derived from the most fre-

quent syllable structure in the world, namely the

CV structure (Vallée et al., 2000). Using the vowel

segments as milestones, the speech signal is parsed

into patterns matching the structure: .CnV. (with n

an integer that may be zero).
For example, the parsing of the sentence dis-

played in Fig. 2 results in the following sequence

of 11 pseudo-syllables:

ðCCV.CV.CV.CCCV.CCCV.CCV.CV.CCCV.
CCCCV.CCCCV.CCCCCVÞ
roughly corresponding to the following phonetic

segmentation:

ða .h�.v\.ph. Å.bl\.mw .ðma .wø .t\.sÅ.fn\Þ
As said before, the segments labelled in the PS

sequence are shorter than phonemes; consequently

the length of the consonantal cluster is to a large

extent biased to higher values than those given

by a phonemic segmentation. We are aware of

the limits of such a basic rhythmic parsing, but it

provides an attempt to model rhythm that may

be subsequently improved. However, it has the
considerable advantage that neither hand-labelled
data nor extensive knowledge of the language

rhythmic structure is required.

A pseudo-syllable is described as a sequence of

segments characterized by their duration and their

binary category (consonant or vowel). This way,
each pseudo-syllable is described by a variable

length matrix. For example, a .CCV. pseudo-sylla-

ble will give:

P .CCV. ¼
C C V

DC1 DC2 DV1

� �
ð2Þ

where C and V are binary labels and DX is the

duration of the segment X.

This variable length description is the most

accurate, but it is not appropriate for Gaussian

Mixture Modelling (GMM). For this reason, an-

other description resulting in a constant length

description for each pseudo-syllable has been de-
rived. For each pseudo-syllable, three parameters

are computed, corresponding respectively with

total consonant cluster duration, total vowel dura-

tion and complexity of the consonantal cluster.

With the same .CCV. example, the description

becomes:

P 0
.CCV. ¼ fðDC1 þ DC2Þ DV NCg ð3Þ
where NC is the number of segments in the conso-

nantal cluster (here, NC = 2).

Even if this description is clearly not optimal
since the individual information on the consonant

segments is lost, it takes a part of the complexity of

the consonant cluster into account.
5. Language identification task

5.1. Corpus description and statistics

Experiments are performed on the MULTEXT

multilingual corpus (Campione and Véronis,

1998), extended with Japanese (Kitazawa, 2002)

and Mandarin (Komatsu et al., 2004). This data-

base thus contains recordings of seven languages

(French, English, Italian, German, Japanese, Man-

darin and Spanish), pronounced by 70 different
speakers (five male and five female per language).

The MULTEXT data consist of read passages

that may be pronounced by several speakers.



Table 3

The MULTEXT Corpus (from Campione and Véronis, 1998)

Language Passages

per

speaker

Total

duration

(min)

Average

duration

per

passage

(s)

Training

(min)

Test

(min)

English 15 44 17.6 24 6

French 10 36 21.9 29 7

German 20 73 21.9 29 7

Italian 15 54 21.7 30 7

Mandarin 15 58 20.0 26 11

Japanese 40 124 31 39 6

Spanish 15 52 20.9 27 8

Table 4

Estimation of DC as a predictor of NC

Language R2 Equation NB PS

EN 0.83 100 bN C ¼ 3.68DC þ 22 11741

FR 0.78 100 bN C ¼ 3.25DC þ 15 9307

GE 0.82 100 bN C ¼ 3.43DC þ 56 19296

IT 0.81 100 bN C ¼ 3.27DC þ 34 14867

JA 0.80 100 bN C ¼ 3.27DC þ 56 28913

MA 0.79 100 bN C ¼ 2.95DC þ 86 14583

SP 0.80 100 bN C ¼ 3.76DC þ 20 15005

Results of a linear regression in least-squares sense. NB PS is the

number of pseudo-syllables from which the regression was

performed for each language. R2 is the squared correlation

coefficient (according to Spearman rank order estimation). All

correlations are highly significant (p < 0001).
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Despite the relative small amount of data and to

avoid possible text dependency, the following

experiments are performed with two subsets of

the corpus defining no-overlapping training and

test sets in terms of speakers and texts (see Table

3). The training corpus is supposed to be represen-

tative of each language syllabic inventory. For in-

stance, the mean duration of each passage for the
French data is 98 syllables (±20 syllables) and the

overall number of syllable tokens in the French

corpus is about 11700.8 Even if the syllable inven-

tory is not exhaustive in this corpus, it is reason-

able to assume that a statistical model derived

from these data will be statistically representative

of most of the syllable diversity for each language.

In the classical rhythm typology, French,
Italian and Spanish are known as syllable-timed

languages while English, German and Mandarin

are stress-timed. Japanese is the only mora-timed

language of the corpus. Whether this typology is

correct or results from an artefact of a rhythmic

continuum, our approach should be able to cap-

ture features linked to the rhythm structure of

these languages.
Intuitively, the duration of consonantal clusters

is supposed to be correlated to the number of seg-

ments constituting the cluster. Table 4 gives the

results of a linear regression with DC (in seconds)

as a predictor of NC. For each language, a signifi-
8 This number takes the number of repetitions of each

passage into account. Considering each passage once, the

number of syllables is 3900.
cant positive correlation is achieved and R2 values

range from 0.78 for French to 0.83 for English (see

Fig. 3 for the scatter plot of English data). In term

of slope, values range from 2.95 for Mandarin to

3.76 for Spanish meaning that the relation between

NC and DC is to some extend language dependent.

For this reason, both parameters have been taken

into account in the following experiments.
Consonant Cluster Duration (ms)

Fig. 3. Evaluation of DC as a predictor of NC for English. Dots

are measured values and the solid line is the best linear fit

estimated in the least-squares sense.



Table 7

Significancy of the differences among the distributions of NC
(multiple comparisons from the Kruskal–Wallis analysis)

EN FR GE IT JA MA SP

EN * * * * n.s. *
FR * * * * *
GE * * * *
IT * * *
JA * *
MA *

n.s. is not significant and * is significant or highly significant.
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In order to test hypotheses on language specific

differences in the distribution of the parameters, a

Jarque-Bera test of normality was performed. It

confirms that the distributions are clearly non nor-

mal (p < .0001; j > 103 for DC, DV and NC, for all
languages). Consequently, a non-parametric Krus-

kal–Wallis test was performed for each parameter

to evaluate the differences among the languages.

They reveal a highly significant global effect of the

language for DV (p < .0001; df = 6; chi-square =

2248), DC (p < .0001; df = 6; chi-square = 1061)

and NC (p < .0001; df = 6; chi-square = 2839). The

results of the Kruskal–Wallis test have then been
used in a multiple comparison procedure using

Tukey criterion of significant difference.

Table 5–7 gives the results of the pairwise com-

parison. In order to make the interpretation easier,

a graphical representation is drawn from the val-

ues (Fig. 4). Regarding consonant duration, a clus-

ter grouping the stress-timed languages is clearly

identified. This cluster is coherent with the com-
plex onsets and coda present in these languages,

either in number of phonemes (English and Ger-

man) or intrinsic complexity of the consonants

(aspirated, retroflex, etc. for Mandarin) The other
Table 5

Significancy of the differences among the distributions of DC
(multiple comparisons from the Kruskal–Wallis analysis)

EN FR GE IT JA MA SP

EN * * * * n.s. *
FR * * * * *
GE * * n.s. *
IT n.s. * *
JA * *
MA *

n.s. is not significant and * is significant or highly significant.

Table 6

Significancy of the differences among the distributions of DV
(multiple comparisons from the Kruskal–Wallis analysis)

EN FR GE IT JA MA SP

EN * n.s. * n.s. * *
FR * * * n.s. *
GE * n.s. * *
IT * * *
JA * *
MA n.s.

n.s. is not significant and * is significant or highly significant.
languages spread along the DC dimension and Jap-

anese and Italian are intermediate between the

most prototypical syllable-timed languages (Span-

ish and French) and the stress-timed languages

cluster.
The situation revealed by DV is quite different:

English, Japanese, German and Italian cluster to-

gether (though significant differences exist between

Italian on one side, and English, Japanese and Ger-

man on the other side) while Mandarin and French

are distant. Spanish is also individualized at this

opposite extreme of this dimension. NC distribu-

tions exhibit important diversity among languages
since English andMandarin are the only cluster for

which no significant difference is observed.
5.2. GMM modelling for identification

GMM (Gaussian Mixture Models) are used to

model the pseudo-syllables which are represented

in the three-dimensional space described in the
previous section. They are estimated using the

EM (Expectation–Maximization) algorithm ini-

tialized with the LBG algorithm (Reynolds, 1995;

Linde et al., 1980).

Let X = {x1,x2, . . . ,xN} be the training set and
P = {(ai,li,Ri), 1 6 i 6 Q} the parameter set that

defines a mixture of Q p-dimensional Gaussian

pdfs. The model that maximizes the overall likeli-
hood of the data is given by:

P	 ¼ argmax
P

YN
i¼1

XQ
k¼1

ak

ð2pÞp=2
ffiffiffiffiffiffiffiffi
jRkj

p(

� exp � 1
2
ðxi � lkÞ

TR�1
k ðxi � lkÞ

� �)
ð4Þ
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Fig. 4. Estimated rank for each language for the DC distribution above, the DV distribution (middle) and the NC distribution below.

Lines spanning across the dots give the 95% confidence interval. Ellipses cluster languages for which the multiple comparisons show no

significant differences.
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where ak is the mixing weight of the kth

Gaussian term.
The maximum likelihood parameters P	 are

obtained using the EM algorithm. This algorithm



Table 8

Results for the rhythmic group identification task (16 Gaussian

components per GMM)

Rhythmic Model
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presupposes that the number of componentsQ and

the initial values are given for each Gaussian pdf.

Since these values greatly affect the performances

of the EM algorithm, a vector quantization (VQ)

is applied to the training corpus to optimize them.
The LBG algorithm (Linde et al., 1980) is

applied to provide roots for the EM algorithm; it

performs an iterated clustering of the learning data

into codewords optimized according to the nearest

neighbor rule. The splitting procedure may be

stopped either when the variation of the data dis-

tortion drops under a given threshold or when a

given number of codewords is reached (this option
is used here).

During the identification phase, all the PS de-

tected in the test utterance are gathered and

parameterized. The likelihood of this set of seg-

ments Y = {y1,y2, . . . ,yN} according to each model
(denoted Li) is given by:

PrðY jLiÞ ¼
XN
j¼1
PrðyjjLiÞ ð5Þ

where Pr(yjjLi) denotes the likelihood of each seg-

ment that is given by:

PrðyjjLiÞ ¼
XQi

k¼1

ai
k

ð2pÞp=2
ffiffiffiffiffiffiffiffi
jRi

kj
q

� exp � 1
2
ðyj � li

kÞ
TR�1

k ðyj � li
kÞ

� �
ð6Þ

Furthermore, hypothesizing under the winner

takes all (WTA) assumption (Nowlan, 1991), the
expression (7) is then approximated by:

PrðyjjLiÞ ¼ max
16k6Qi

ai
k

ð2pÞp=2
ffiffiffiffiffiffiffi
jRi

k

q
j

264
� exp � 1

2
ðyj � li

kÞ
TR�1

k ðyj � li
kÞ

� �375
ð7Þ
group
Stress-timed Syllable-timed Mora-timed

Stress-timed 55 5 –

Syllable-timed 10 48 1

Mora-timed 2 2 16

Overall score is 86 ± 6% (119/139 files).
5.3. Automatic identification results

Pseudo-syllable segmentation has been con-
ceived to be related to language rhythm. In order
to assess whether this is actually verified or

not, a first experiment aiming at discriminating

between the three rhythmic classes is performed;

a language identification experiment with the

seven languages is then achieved. At last, a stan-
dard acoustic approach is implemented and tested

with the same task to provide a comparison.

The first experiment aims at identifying to

which rhythmic group belongs the language spo-

ken by an unknown speaker of the MULTEXT

corpus. The stress-timed language group gather

English, German and Mandarin. French, Italian

and Spanish define the syllable-timed language
group. The mora-timed language group consists

only of Japanese. The number of Gaussian compo-

nents is fixed to 16 using the training set as a devel-

opment set to optimize the number of Gaussian

components of the GMM. The overall results are

presented in Table 8 in a confusion matrix. 119

from 139 files of the test set are correctly identified.

The mean identification rate is 86 ± 6% of correct
identification (chance level is 33%) and scores

range from 80% for syllable- and mora-timed lan-

guages to 92% for stress-timed languages. These

first results show that the PS approach is able to

model temporal features that are relevant for

rhythmic group identification.

The second experiment aims at identifying

which of the seven languages is spoken by an un-
known speaker of the MULTEXT corpus. The

number of Gaussian components is fixed to 8,

using the training set as a development set to opti-

mize the number of Gaussian components of the

GMM. The overall results are presented in Table

9 in a confusion matrix. 93 from the 139 files of

the test set are correctly identified. The mean iden-

tification score thus reaches 67 ± 8% of correct



Table 9

Results for the seven language identification task (eight

Gaussian components per GMM)

Language Model

EN GE MA FR IT SP JA

English 16 1 1 – 1 1 –

German 5 14 1 – – – –

Mandarin 4 3 11 – 1 – 1

French – – – 19 – – –

Italian 6 1 1 – 11 – 1

Spanish – – – 8 2 6 4

Japanese 2 – – – 2 – 16

Overall score is 67 ± 8% (93/139 files).
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identification (chance level is 14%). Since the test

corpus is very limited, the confidence interval is

pretty wide.

Scores broadly vary and range from 30% for

Spanish to 100% for French. Actually, Spanish is

massively confused with French; Italian is also

fairly misclassified (55% of correct decision) and

especially with English. Bad classification is also
observed for Mandarin which is confused with

both German and English (55% of correct identifi-

cation). It thus tends to confirm that the classifica-

tion of Mandarin as a stress-timed language is

consistent with the acoustic measurements per-

formed here and for which the Mandarin PS distri-

butions are not significantly different from either

German or English distributions.
The wide range of variation observed for the

scores may be partially explained studying the

speaking rate variability. As for rhythm, speaking

or speaker rate is difficult to define but it may be

evaluated in term of syllable or phoneme per sec-

ond. Counting the number of vowels detected per

second may provide a first approximation of the

speaking rate (see Pellegrino et al., 2004, for a
discussion about the speaking rate measurement).

Table 10 displays for each language of the data-

base the mean and standard deviation of the num-
Table 10

Speaking rate approximated by the number of vowels detected per se

English French German

Mean 5.39 6.37 5.06

Std. deviation 0.52 0.33 0.45
ber of vowels detected per second among the

speakers of the database.

This rate ranges from 5.05 for Mandarin to 6.94

for Spanish and these variations may be due to

both socio-linguistic factors and rhythmic factors
related to the structure of the syllable in those lan-

guages. Spanish and Italian exhibit the greatest

standard deviations (resp. 0.59 and 0.64) of their

rate. It means that their models are probably less

robust than the others since the parameter distri-

butions are wider. On the opposite, French disper-

sion is the smallest (0.33) and consistently has the

better language identification rate. This hypothesis
is supported by a correlation test (Spearman rank

order estimation) between the language identifica-

tion score and speaking rate standard deviation

(q = �0.77, p = 0.05). This shortcoming points

out that, at this moment, no normalization is per-

formed on the DC and DV durations. This limita-

tion prevents our model from being adapted to

spontaneous speech and this major bottleneck
must be tackled in a near future.

At last, the same data and task have been used

with an acoustic GMM classifier in order to com-

pare the results of the purely rhythmic approach

proposed in this paper with those obtained with

a standard approach. The parameters are com-

puted on each segment issued from the automatic

segmentation (Section 4). The features consist of
8 Mel Frequency Cepstral Coefficients, their deriv-

atives, and energy, computed on each segment.

The number of Gaussian components is fixed to

16 using the training set as a development set to

optimize the number of Gaussian components of

the GMM. Increasing the number of components

does not result in better performances; this may

be due to the limited size of the training set both
in terms of duration and number of speakers (only

eight speakers per language, except for Japanese:

four speakers). The overall results are presented

in Table 11 in a confusion matrix. 122 from 139
cond for the seven languages

Italian Japanese Mandarin Spanish

5.71 5.29 5.05 6.94

0.64 0.51 0.52 0.59



Table 11

Results for the seven language identification task (standard

acoustic approach, 16 Gaussian components per GMM)

Language Model

EN GE MA FR IT SP JA

English 15 – – – 5 – –

German – 20 – – – – –

Mandarin – – 20 – – – –

French – – – 17 – 2 –

Italian 2 – 2 – 13 1 2

Spanish 1 – – 2 – 17 –

Japanese – – – – – – 20

Overall score is 88 ± 5% (122/139 files).
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files of the test set are correctly identified. The

mean identification rate is 88 ± 5% of correct

identification.

German, Mandarin and Japanese are perfectly

identified. The worst results are reached for Italian

(65%). Noteworthy is that Mandarin is well dis-

criminated from English and German, contrary

to what was observed with rhythmic models. This
suggests that the two approaches may be efficiently

combined to improve the performances. However,

the fact that the acoustic approach reaches signif-

icantly better results than the rhythmic approach

implies that further improvement are necessary

before designing an efficient merging architecture.
6. Conclusion and perspectives

While most of the systems developed nowadays

for language identification purposes are based on

phonetic and/or phonotactic features, we believe

that using other kinds of information may be com-

plementary and widen the field of interest of these

systems, for example by tackling linguistic typo-
logical or cognitive issues about language process-

ing. We propose one of the first approaches

dedicated to language identification based on

rhythm modelling that is tested on a task more

complex than pairwise discrimination. Our system

makes use of an automatic segmentation into

vowel and non-vowel segments leading to a pars-

ing of the speech signal into pseudo-syllabic
patterns. Statistical tests performed on the lan-

guage-specific distributions of the pseudo-syllable
parameters show that significant differences exist

among the seven languages of this study (English,

French, German, Italian, Japanese, Mandarin and

Spanish). A first assessment of the validity of this

approach is given by the results of a rhythmic class
identification task: The system reaches 86 ± 6% of

correct discrimination when three statistical mod-

els are trained with data from stress-timed lan-

guages (English, German and Mandarin), from

syllable-timed languages (French, Italian and

Spanish) and from Japanese (the only mora-timed

language of this study). This experiment shows

that the traditional stress-timed vs. syllable-timed
vs. mora-timed opposition is assessed with the

seven languages we have tested, or more pre-

cisely, that the three language groups (English +

German + Mandarin vs. French + Italian + Span-

ish vs. Japanese) exhibit significant differences

according to the temporal parameters we propose.

A second experiment done with the seven lan-

guage identification task produces relatively good
results (67 ± 8% correct identification rate for 21-s

utterances). Once again, confusions occur more fre-

quently within rhythmic classes than across rhyth-

mic classes. Among the seven languages, three are

identified with high scores (more than 80%) and

can be qualified as ‘‘prototypical’’ from the rhyth-

mic groups (English for stress-timing, French for

syllable-timing and Japanese for mora-timing). It
is thus interesting to point out that the pseudo-

syllable modelling may also manage to identify

languages that belong to the same rhythmic family

(e.g. French and Italian are not confused), showing

that the temporal structure of the pseudo-syllables

is quite language-specific. To summarize, even if

the pseudo-syllable segmentation is rough and not

able to take the language-specific syllable structures
into consideration, it captures at least a part of the

rhythmic structure of each language.

However, rhythm cannot be reduced to a raw

temporal sequence of consonants and vowels,

and, as pointed out by Zellner-Keller (2002) its

multilayer nature should be taken into account

to correctly characterize languages. Among many

parameters, those linked to tones or to the stress
phenomenon may be pretty salient. For instance,

Mandarin, which is fairly confused with other lan-

guages in the present study may be well recognized
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with other suprasegmental features due to its tonal

system. Consequently, taking energy or pitch fea-

tures into account may lead to significant improve-

ment in the language identification performance.

However, these physical characteristics lay at the
interface between segmental and supra-segmental

levels and their values and variations thus result

from a complex interaction, increasingly compli-

cating their correct handling.

Besides, the algorithm of pseudo-syllable seg-

mentation may also be enhanced. An additional

distinction between voiced and voiceless conso-

nants may be performed to add another rhythmic
parameter, and moreover, more complex pseudo-

syllables including codas (hence with a CmVCn

structure) may be obtained by applying segmenta-

tion rules based on sonority (see Galves et al., 2002

for a related approach).

Last, the major future challenge will be to

tackle the speaking rate variability (shown in

Section 5 to be correlated to the identification per-
formance) and to propose an efficient normalizing

or modelling that will allow us to adapt this

approach to spontaneous speech corpora and to

a larger set of languages. Very preliminary experi-

ments performed on the OGI MLTS corpus are

reported in (Rouas et al., 2003).
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