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Abstract. This contribution deals with the automatic identification of
the dialects of the British Isles. Several methods based on the linguistic
study of dialect-specific vowel systems are proposed and compared using
the Accents of the British Isles (ABI) corpus. The first method examines
differences in diphthongization for the face lexical set. Discrimination
scores in a two-dialect discrimination task range from chance to ca. 98%
of correct decision depending on the pair of dialects under test. Thanks
to the ACCDIST method (developed in [1]), the second and third exper-
iments take dialectal differences in the structure of vowel systems into
consideration; evaluation is performed on a 13-dialect closed set identi-
fication task. Correct identification reaches up to 90% with two subsets
of the ABI corpus (/hVd/ set and read passages). All these experiments
rely on a front-end automatic phonetic alignment and are therefore text-
dependent. Results and possible improvements are discussed in the light
of British dialectology.

1 Introduction

The specific patterns of pronunciation that are related to speakers’ regional
origin or social background greatly contribute to the distinctiveness of their
voices, and therefore to the variability of speech. Dialect – or rather accent1 –
identification has therefore become an important concern in speech technology.
For instance, it has been shown that automatic speech recognition systems can
perform tremendously better when the training and the test sets are matched
for dialect ([2]). Dialect identification – whether the task be carried out by a
computer or a human expert – also has forensic applications ([3]) although, as
is the case with any other component of somebody’s voice, the plasticity issue
(e.g. somebody may alter their accent for sociolinguistic reasons, or in order to
deceive) raises daunting challenges for the speech community. Our aim here is
to assess to what extent knowledge of the phonetics of dialects can provide an

1 The word accent quite often refers to foreign-accented speech, and although it is
appropriate to designate the pronunciation of dialects, the term dialect will be used
instead since the present contribution deals exclusively and unambiguously with
pronunciation features.
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alternative to crude acoustic modelling. A substantial part of this contribution
is therefore devoted to some aspects of phonetic vowel variation across dialects.
The remainder covers experiments in the automatic classification of the dialects
of the British Isles ([4, 1, 5]) with a twofold objective: evaluating classification
scores per se, and demonstrating how automatic methods can assist researchers
in phonetics and dialectology.

2 An Overview of the Dialects of the British Isles

Most of the dialects of the British Isles have been extensively described in the
literature; therefore an exhaustive account falls well beyond the scope of this
contribution. The reader is advised to consult the following references for thor-
ough information on the phonetic aspect: [6–9]. However, some features are high-
lighted in this section because they constitute the necessary background basis
for the rest of the discussion. In traditional (areal) dialectology, pronunciation
isoglosses, i.e. boundaries demarcating dialects, have commonly been used. The
boundaries that delimit differences in vowel systems are of particular interest to
us since they are at the heart of the method developed in Experiment 2. By way
of example, gas does not rhyme with grass in the south of England, but it does
in the (linguistic) north. Similarly, the vowels of nut and put are phonologically
identical in the north, but a phonemic split caused them to be differentiated in
the south. Good and mood rhyme in Scotland, but not in the rest of the British
Isles, while nurse and square have been reported to have the same vowel in
certain speakers from Liverpool and Hull, for example. However, just as surface
realization can be affected by sociological factors, vowel systems too may vary
within a given location, and speakers sometimes try to “posh up” their accent by
adopting the vowel system of a more prestigious variety than their own. This can
lead to a phenomenon known as hypercorrection whereby, for instance, a speaker
from the north of England (having no distinction between the vowels in nut and
put) tries to imitate a southerner, failing to identify which words should pattern
with the southern phonemes of nut or put, and ends up pronouncing sugar with
the vowel of nut (example taken from [7, page 353]). This may sound trivial,
but it has serious consequences on the method we describe in Experiment 2.
The question of lexical incidence (roughly speaking: deciding to which phonemic
category a vowel token belongs) is indeed crucial here because it suggests ex-
treme caution – and, clearly, expert knowledge – when choosing the key words
for creating shibboleth sentences. Suppose a phonetician designs test sentences
to elicit the – or the absence of – contrast between gas and grass or father in
order to determine whether a speaker is from the north or the south of England.
Without prior knowledge of dialectology, he or she may well wrongly infer from
the spelling that mass patterns with grass, or that gather rhymes with father
in southern dialects. Opposing gather or mass with gas, and therefore failing
to identify the correct underlying phonological representation of these words,
would lead the phonetician to miss the potential contrast under study. We will
return to this question further below. Beside systemic differences, dialect varia-
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tion is also manifested by different phonetic realizations of the same phoneme;
this characteristic also plays an important role in Experiment 2, and it is clearly
illustrated in Experiment 1, which focuses on diphthongization.

3 Corpus Description

Table 1. Dialects of the ABI Database.

LABEL DIALECT PLACE

brm Birmingham Birmingham
crn Cornwall Truro
ean East Anglia Lowestoft
eyk East Yorkshire Hull
gla Glasgow Glasgow
ilo Inner London London (Tower Hamlet)
lan Lancashire Burnley
lvp Liverpool Liverpool
ncl Newcastle Newcastle
nwa North Wales Denbigh
roi Republic of Ireland Dublin
shl Scottish Highlands Elgin
sse Standard Southern English London
uls Ulster Belfast

The material comes from the Accents of the British Isles (ABI) corpus ([10]).
The database consists of recordings from 14 geographical areas throughout the
British Isles. For each variety of English, 20 speakers on average (equally divided
into men and women) participated. In the following experiments, two types of
data were used: a list of 19 /hVd/ words spoken 5 times by each speaker, and
a read passage, containing approximately 290 word tokens, specifically designed
to elicit dialect variation. The recordings took place in quiet rooms (e.g. in
public libraries) at the beginning of 2003; the participants spoke through a head-
mounted microphone that was connected to a PC via an external sound card.
The sound files are mono 16 bit 22050Hz PCM Windows files. Worthy of mention
is the total lack of individual information on the participants (age, occupation,
etc.), which precludes the inclusion of highly relevant sociolinguistic factors in
the study. The dialects and the towns where the corresponding recordings took
place are listed in Table 1.

4 Experiment 1: Diphthongization

4.1 Goal

Diphthongization refers to the stability over time of the formant pattern in a
vowel. The concept lies at the phonetic level in that it disregards whether a vowel
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be phonologically termed a diphthong or not. For example the vowels of fleece
and goose 2 in Standard British English are often described as monophthongs
in manuals for foreign learners, but they are clearly diphthongized. Our aim is to
come up with an economical and sufficient set of parameters to describe formant
stability and then validate the model with a classifier. For the sake of parsimony,
and in order to get rid of part of the individual variation, absolute vowel initial
and final formant values are discarded (although they are known to be dialect
specific) and only dynamic features are considered. In the first experiment we
concentrate on the so-called face vowel, which occurs in the corpus in the words
sailor, faces, today, takes, same, generations, way, stable, unshakable, faith, later,
favour, great, fame, Drake, sail, and make. We posit for practical reasons that
all these words belong to the face set. Note however that this may be too much
of an assumption, and a more cautious approach is taken in Experiment 3 where
we no longer consider lexical sets, but individual words instead. Using formant
trajectories (i.e. the formant slopes) as a criterion, the face vowel has, roughly
speaking, three main realizations in the dialects of the British Isles:

1. a long closing diphthong beginning with an open-mid vowel and gliding to-
wards a close front position, e.g. in the south of England (e.g. Figure 1a);

2. a centring diphthong starting from a mid-close (or even closer) quality and
gliding towards schwa in Newcastle (e.g. Figure 1b);

3. a rather short front close-mid monophthong, e.g. in Scotland and some di-
alects of the north of England (e.g. Figure 1c).

It is hypothesized that the slopes of F1 and F2 will adequately model these three
types of vowels.

4.2 Method and Results

A transcription at the phonetic level was generated with forced alignment using
the Hidden Markov Model Toolkit (HTK) ([11]). The models had been trained on
the WSJCAM corpus3. Formant values were estimated with the Praat program
([12]) using the Burg algorithm set with default values. Some formant extraction
errors occurred (as confirmed by visual inspection of formant tracks); however,
in order to keep the procedure as automatic as possible, no attempt was made to
manually get rid of outliers. Then the slopes of F1 and F2 were computed with
robust linear regression in Matlab. Knowledge of phonetic variation was taken
into account in order to conceptualize the classification problem. Given that
one single linguistic variable (i.e. the face vowel) does not allow separability
between all dialects, the original task with C = 14 classes was approached as
C(C−1)/2 = 91 separate two-class problems. Another reason for building several
two-class models, which would be worth exploring, is to gather an optimal - and
therefore presumably different - set of parameters for each pair of dialects. In the
2 These small capitalized key words stand for lexical sets: [7] popularized this practice

in the early 80s, and it is still widely used in British English dialectology nowadays.
3 We are grateful to Mark Huckvale for kindly providing the HMM models.
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absence of any a priori reason to the contrary, linear separability was assumed
and the classification was performed with a single layer neural net implemented
with the Netlab toolbox ([13]). The network has two inputs: the slopes of F1 and
F2. For each pair of dialects, all the tokens of all speakers except the speaker
under test are passed through the network. This cross-validation procedure is
adopted because of the very small size of the dataset. The network is trained
with 10 iterations of the iterated re-weighted least squares algorithm. Finally
the ouput neuron with a logistic activation function makes a binary decision:
the test speaker’s tokens either belong to the first or the second dialect of the
current pair. A correct classification score is therefore computed for each pair of
dialects. In order to save space the 91 scores are not reproduced here; instead,
the top and bottom ten pairs are shown in Table 2. The fourth column shows the

0 366Time (ms)
0

4000

Fr
eq

ue
nc

y 
(H

z)

0 380Time (ms)
0

4000

Fr
eq

ue
nc

y 
(H

z)

0 330Time (ms)
0

4000

Fr
eq

ue
nc

y 
(H

z)

a) ean

b) ncl

c) shl

Fig. 1. Spectrograms exemplifying the three realizations of the face vowel.

geographical distance (in km) between towns. Note how, on average, pairs with
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high classification scores are farther apart than those with low scores. Actually,
a rather low but significant correlation exists between discrimination scores and
geographical distances for the 91 pairs (r = .53, Spearman rank correlation).

4.3 Discussion

This experiment is the most linguistic-oriented one since the correspondence be-
tween formant slope values (the input to the model) and the traditional phonetic
vowel quadrilateral facilitates phonetic interpretation. In other words, Experi-
ment 1 not only shows that the method works, but also that the results are
directly interpretable in phonetic terms. However, one of the flaws lies in that
automatic formant estimation is only partially reliable. Besides, the automatic
aspect is quite restricted, and the method described here is therefore very un-
likely ever to be implemented in real-life applications. It may however prove
a useful tool for testing dialectological hypotheses such as the discriminatory
power of a given pronunciation trait.

Table 2. Paired-dialect discrimination based on diphthongization. The ten highest
and lowest scores are displayed. All scores, unless specified (ns), are significant at the
p = .05 level (binomial tests).

CORRECT GEOGRAPHICAL
DIALECT1 DIALECT2 DISCRIMINATION (%) DISTANCE (km)

brm shl 97.8 581
ean shl 96.8 658
ean gla 96.3 541
shl sse 96.1 712
brm gla 95.9 406
crn shl 95.5 829
ilo shl 95.4 712

brm ncl 95.2 277
lvp shl 95.0 471
ean ncl 94.7 354

...
lvp roi 57.3 219
lvp sse 56.3 ns 285
nwa roi 52.6 ns 189
crn lvp 51.4 ns 380
crn sse 51.3 ns 374
ilo sse 51.3 ns 0
gla ncl 51.0 ns 193
lvp nwa 49.7 ns 38
eyk lan 49.3 ns 125
crn ilo 42.5 374
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5 Experiment 2: Vowels in hVd Context

5.1 The ACCDIST Method

In Experiment 2, 19 vowels embedded in /h d/ consonantal contexts were ex-
amined. /hVd/ words have often been used in phonetic studies because the
acoustic characteristics of vowels are only slightly affected by these consonants,
and keeping the same consonantal context rules out coarticulatory differences.
In a multi-dialect perspective, the 19 /hVd/ words presumably instantiate all
possible phonological contrasts in the dialect that has the biggest inventory4.
Artificial though the stimuli may seem, they nevertheless give the opportunity
to calibrate the system under ideal conditions for subsequent use on data closer
to real-life speech (see Experiment 3), and provide a convenient way of studying
variation in phonological systems. Prior to the analysis proper, a native English
expert phonetician examined the corpus and advised us against including the ilo
subset on the grounds that the extreme heterogeneity of the speakers could in no
way form a single entity (further details are given in section 7.1). More than for
any other dialect in the corpus, individual information on speakers would have
been essential. ABI comes complete with a word-level segmentation; assuming –
although this is not totally accurate – that voiced frames corresponded to vowels,
automatic pitch detection with the Snack Sound Toolkit ([14]) was employed to
estimate vowel boundaries. 12 MFCC and one energy feature were computed at
25 %, 50%, and 75 % of the duration of the vowel, and the duration itself was
included to form a vector of 40 features. The computation was done with the
melfcc routine from the rastamat toolbox ([15]); the options were those that the
author recommends to duplicate HTK’s MFCC, except that the window length
and the analysis step were set to 20 ms and 10ms, respectively. After removing
the speakers from ilo and two participants who did not complete the whole set
of test words, we were left with 261 speakers. The rationale for the classification
method was first introduced, as far as we know, by [4], and it was later adopted
by [1], who devised the ACCDIST method (Accent Characterisation by Com-
parison of Distances in the Inter-segment Similarity Table), which is central to
this section5. Speaker normalization is a critical issue in phonetics: differences
in individual acoustic spaces, either due to physiological constraints or habit,
have to be factored out. [4] and later [1] got round the problem by representing
vowels with reference to a speaker’s vowel space structure, and not to average
stored values. One way to do this is to compute distances between each pair of
vowels. As mentioned above, a vector of size 40 was computed for each vowel.

4 This again is an oversimplification: to be more accurate, the 19 stimuli exemplify
the phonological vowel contrasts of Standard British English, which implies that
the other vowel inventories are assessed with reference to that of Standard English,
and not to an ideal panlectal representation. Thus, we have no means of knowing
whether increasing the number of /hVd/ words would elicit other contrasts in the
remaining dialects.

5 [1] also used the ABI corpus; he however worked on a different part of the database,
namely, a set of shibboleth sentences.
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For a given speaker, the values for the five repetitions of each /hVd/ type were
averaged. Then, distances were calculated between the 19 vowel types, yielding,
for each speaker, a 19 × 19 symmetric distance matrix. Quite a few distance
measures for continuous variables are available in the literature (see for example
[16], for a discussion of the properties of some of them), and the choice of the
appropriate one depends on the particular kind of data. Central to the problem
is the issue of variable weighting: in our n×p matrices (where n are the 19 vowels
of a speaker and p the 40 spectral and duration features), the ranges and scales
of the p variables differ substantially. It is common practice to standardize each
variable to zero mean and unit variance (i.e. computing a so-called z-score); yet,
we assumed that, given that the computation of MFCC is based on an auditory
filter bank, the differential weightings induced by differences in scales and ranges
reflected perceptually relevant attributes of the spectrum, and should therefore
be preserved. A good choice in such cases is to use a family of distance metrics
whose general form is the Minkowski distance:

dij =

(
p∑

k=1

|xik − xjk|r
) 1

r

(1)

where r must be superior or equal to 1. As the chosen r value increases, the
differential weighting of the p variables also increases: large differences are given
relatively more weight than small ones. Bearing in mind what has just been said
about the perceptual relevance of our feature space, we want to avoid distorting
it by using high exponents and will therefore stick to low values such as r = 1
and r = 2, which correspond to the Manhattan and Euclidean distances, respec-
tively. So, once a 19× 19 distance matrix has been computed for each speaker,
the classification method described in [1] is carried out: 13 dialect matrices are
obtained by getting the mean of the individual matrices for each dialect. The
validation procedure goes as follows: the dialect matrix of the speaker under test
is re-computed without her/his individual matrix and then each individual ma-
trix is compared to the 13 dialect matrices. Matrix similarity is estimated with
a matrix correlation coefficient: the two matrices, i.e. the test speaker and the
dialect matrix (or rather: either the upper or lower triangular part, since they are
symmetric) are unfolded onto a row vector, then the Pearson product-moment
correlation is computed. The speaker under test is classified as belonging to the
dialect whose correlation with her/his matrix is highest. Percent correct identi-
fication scores are 86.6 %, 89.0 %, and 89.7 %, for men, women, and both sexes
respectively, using the Euclidean distance. Slight improvements are obtained in
both sexes condition with the Manhattan distance: 90.0 %. Correlation measures
are insensible to scale magnitude, which solves the question of speaker normal-
ization. Note incidentally that the method is unaffected by sex differences.

5.2 Gaussian Modelling

An alternative classification using Gaussian modelling was carried out with the
Netlab ([13]) toolbox. The model takes z-scored individual distance matrices as
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Table 3. Confusion Matrix: /hVd/ words; all subjects; Manhattan distance. Overall
correct score: 90.0%.

TEST MODELS
DIALECT BRM CRN EAN EYK GLA LAN LVP NCL NWA ROI SHL SSE ULS

brm 18 - 1 - - 1 - - - - - - -
crn - 16 - - - - - - - 1 - 3 -
ean 1 - 15 - - - - - - - - 3 -
eyk 2 - - 22 - - - - - - - 1 -
gla - - - - 18 - - - - - - - 2
lan - - - - - 21 - - - - - - -
lvp - - - - - - 19 - - - - - -
ncl - - - - - - - 18 1 - - - -
nwa 1 - - - - - 1 - 18 - - - -
roi - - - - - - - - 1 19 - - -
shl 1 - - - 1 - - - - - 19 - 1
sse 1 1 2 - - - - - - - - 12 -
uls - - - - - - - - - - - - 20

input and estimates one Gaussian model N(µ, σ) per dialect. As before, the test
speaker is excluded from the training set; in other words, for each speaker, a
new model is trained on all the data minus this speaker’s matrix. The estimated
dialect identity is then given according to the Maximum Likelihood decision.
This statistical decision yields a non significant improvement over the previous
method: for the both sexes condition, the model achieves 90.4 % correct classifi-
cation.

5.3 Discussion

Both methods seem to perform equally well, which might indicate that a ceiling
has been reached for this particular corpus. This question will be addressed more
in depth in Section 7.1. A close examination of Table 3 suggests that linguistic
explanations can often justify some of the misclassifications. For example, the
historical link between ean and sse may account for the 3 ean speakers being
classified as sse, and the 2 speakers of sse being classified as ean. The fact that
2 speakers of gla, and 1 from shl were identified as uls could be accounted for
by saying that the 3 dialects belong to a common super region, namely, the
Celtic contries. The high scores were of course facilitated by the absence of
co-articulatory variation; yet, it is worth pointing out that even /hVd/ words
– whose weaknesses are constantly condemned – contain essential information
about dialect. And, what is more, they probably constitute the quickest and
most convenient way to form an opinion about the linguistic quality of a corpus,
or the feasibility of a classification task.
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6 Experiment 3: Dialect Classification with Read
Passages

The ACCDIST procedure is then applied to the read passage part of the corpus.
The segmentation was obtained through forced-alignment as in Experiment 1.
The number of words uttered by all speakers amounted to 61. When words were
polysyllabic, only the stressed syllable was kept for the classification. The same
spectral and duration parameters as in Experiment 2 were computed. One option
would have been to classify the vowels according to the lexical set they belonged
to. However, this would have artificially reduced the diversity of coarticulatory
phenomena, possibly leading to poor performances, and it would have necessi-
tated the intervention of a human expert in order to infer lexical set membership
of the stressed vowel in a given word. This would in turn have led to a manifold
increase in the tedium and the time to carry out the classification, not to men-
tion the questionable theoretical validity of such inferences. A sounder approach
that by-passes such linguistic hypotheses was therefore adopted: instead of vowel
types, distances were computed between vowel tokens. Note here that 264 speak-
ers are included. The 61 × 61 individual distance matrices were then classified
with the same correlation-based procedure that was used for the /hVd/ words.
89.6%, 87.6 %, and 90.5 % correct classification are obtained for men, women,
and both sexes respectively with the Euclidean distance. The Manhattan dis-
tance yields 87.4 % and 89.4 % for men and women; there is no improvement for
the third condition.

7 General Discussion

7.1 Guidelines to Assess Classification Scores

One of the questions underlying these experiments is how good a 90 % correct
classification score is with respect to the data that has been analysed. A fun-
damental conceptual discrepancy between language identification and dialect
identification should help us come up with a tentative answer. Except for a
few borderline cases – including code-switching –, language sets are in principle
mutually exclusive; in other terms, a speaker either speaks language A or lan-
guage B, and certainly not a mixture of the two. Matters get more complicated
for dialect corpora: dialect membership for a speaker does not mean that the
speaker produces all the phonetic features of that particular dialect, nor does
it mean that s/he does not use features from other dialects. And as the dis-
tance (however it is measured) of a speaker from its dialect prototype increases,
so does the risk of this speaker being associated (by a naive listener, an expert
phonetician, or the machine) with another dialect. In other words, it is undoubt-
edly more adequate to view dialect classes as fuzzy sets, and language classes
as hard sets, although quite circularly, depending on linguistic denominations,
we may come across borderline cases: if we use the linguistic criterion of mutual
intelligibility, some entities traditionaly termed “languages” can overlap (see the
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case of Danish, Swedish, and Norwegian) while others called “dialects” may be
rather distinct (possibly the case for distant dialects of Arabic). Translating this
into figures, it could be said that language identification scores must be judged
against the maximal achievable score (i.e. 100% in almost all cases) whereas,
there is no simple way to estimate this figure for dialects. There probably ex-
ists a floor (above chance level) below which the scores of an automatic dialect
identification system can be considered bad; this floor could be given by classi-
fication carried out by naive listeners. And there certainly is another threshold
around which scores can be deemed excellent. We tried to estimate the value of
the latter threshold with an informal experiment: a native speaker expert pho-
netician was asked to listen to one third of all the passages spoken by men in
the ABI corpus. The experiment was actually divided into 14 (one per dialect)
separate verification tasks. In each task, the expert had to listen to a stimulus
and say whether it had been uttered by a speaker of the dialect of the current
task or not. We will not go into too much detail since this is beyond the scope
of the present research, suffice it to say that the expert scored 89.6 %. Of course,
proficient though the expert may have been, his degree of acquaintance with
dialects probably varied from one to the next, but this is the closest we can get
to estimating the highest possible classification score. Ceiling effects in classifi-
cation accuracy are also suggested by a statement in the documentation of the
corpus acknowledging that some speakers, particularly in crn and nwa, have an
accent that might not be regarded as typical.

7.2 Descriptive Scope

Part of the descriptive task of the phonetician is to come up with linguisti-
cally interpretable visual representations from multidimensional raw numerical
data. Graphical displays, particularly vowel plots, have been frequently used to
illustrate phonetic phenomena. This section exemplifies how the methods em-
ployed in Experiment 2 for classification can be used as a descriptive tool. The
dendrograms in Figures 2 and 3 display the output of hierarchical clustering
computed with the single linkage algorithm implemented in Matlab for a se-
lected set of vowels in two female speakers from eyk and shl respectively. The
first tree clearly shows the relative proximity of hood and Hudd, exemplifying the
well-known absence of phonemic split in the north of England we discussed in
Section 2. The second tree illustrates the phonemic merger in Scotland involving
the vowels of hood and who’d. Figure 4 shows the scatter of women from six
selected dialects based on individual 19 × 19 distance matrices computed with
the /hVd/ words. Each individual matrix was z-scored and dimensionality was
reduced with principal component analysis. The plane is defined by the first two
principal components, which account for approximately 35 % of the variance of
the original data. High though the distorsion may be, meaningful patterns can
still be identified on the graph: an imaginery oblique line separates the dialects
of England (ean,lan, and ncl) from those of the Celtic countries (gla, roi, and
shl). Then, within the English group, an almost geographical picture emerges:
ean in the south east, lan in the north west, and ncl in the north east. In the
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Fig. 2. Dendrogram illustrating the absence of hood vs. Hudd phonemic split in eyk.

hood who’d Hudd heard hared
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Fig. 3. Dendrogram illustrating the phonemic merger involving hood and who’d in shl.

Celtic group, Scotland and Ireland are neatly split, with roi being distinct from
gla and shl6. Finally, within the Scottish subset, the situation looks more fuzzy
(but this may simply be a consequence of dimensionality reduction), although
there is a tendency for gla speakers to cluster near the bottom of the graph,
and shl speakers above the latter. Whatever the goodness of the final display,
the efficiency of inter-segment distance matrices to capture dialect specifities
is confirmed by the bidimensional map whose interpretation in linguistic and
geographical terms makes perfect sense.

6 Note however that one speaker from roi ended up with the ncl cluster.
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Fig. 4. Female speakers from 6 dialects along 1st and 2nd principal components derived
from the distance matrices on /hVd/ words.

7.3 Suggested Improvements

We now turn to the question of how to improve the classification scores. Consider
the n×p matrix where n refers to the 261 speakers and p to the 19(19−1)/2 = 171
distances (i.e. the unfolded 19×19 individual symmetric matrix) between pairs of
vowels. It is very unlikely that all distances possess equal discriminatory power:
some may be extremely relevant, e.g. those between two vowels that can be ei-
ther merged or not depending on the specific vowel system, others may have
only slight discriminatory power, for example those implying minute phonetic
differences, and others may be irrelevant altogether. In addition, measurements
on continuous scales contain noise, hence we could consider dichotomizing some
of the quantitative variables. For example, phomenic mergers, or the absence of
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phonemic splits, could be regarded as binary events: on a continuous scale, the
distance between hood and Hudd in northern English dialects is never equal to
zero, although it should be in systemic (phonological) parlance. Besides, it may
vary between speakers despite their producing exactly the same target vowel
in these two words. The varying distances between hood and Hudd in a set of
speakers having no hood vs. Hudd contrast is linguistically irrelevant, and it
adds noise to the system. So there must be a threshold in the distance measured
on a continuous scale below which the two vowels can be regarded as identical;
and above this threshold, the two vowels can be considered different. Feature
selection (recall that the features are the p = 171 distances between vowel pairs)
would be desirable for at least three reasons. Firstly, it would rid the system
of noisy variables, possibly improving classifications scores and reducing com-
putational cost. Secondly, some modelling techniques require a subtle balance
between the number of examples to classify and the size of the feature space
(the n and p dimensions in the matrix respectively); given the small size of n in
our data, reducing p is imperative. Thirdly, and most interestingly, special cases
of feature selection such as feature ranking and feature weighting can provide
explanatory principles: such methods as K-means partitioning may be used to
assess the relative weight of each feature ([17]). This assessment could in turn
validate linguistic hypotheses on the discriminatory power of each feature. All
these methods work a posteriori in that they need the data first; another possible
improvement would be to include linguistic knowledge prior to data analysis. [4]
applied such a procedure to increase the potential differentiation of dialects: for
example, if the distance between the vowels of father and after is smaller than
that between cat and after, then strong evidence for a southern English dialect
is obtained, whereas this weighs against northern English dialects, and neither
favours nor disfavours Scottish dialects. So [4] came up with an a priori triva-
lent weight system which somewhat enhances the discrimination on the basis of
phonological knowledge after the raw numerical evidence has been accumulated.

7.4 Perspectives

The classication method presented here is text-dependent: what is being said
must be known beforehand, and the words of the training and test sets must
match. Besides, it is based on phonetic and phonological knowledge of dialect
differences, and we must bear in mind that the stimuli (/hVd/ words and read
passages) were precisely designed to elicit dialect variation, and therefore facili-
tate discrimination. So this approach can be termed shibboleth-based. Now, how
good would the performance be with a randomly chosen text? More specifically,
how could one deal with mismatches between the vowels of the training datasets
and those of the test speaker set? Another challenge is the transposition of the
method to spontaneous speech. Future research will focus on text-independency
and include other phonetic cues such as consonants and suprasegmentals.
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