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Abstract 

An automatic estimation of speaking rate is developed in this 
paper. It is based on an unsupervised vowel detection 
algorithm and thus may be costlessly applied to any language. 
Validation is driven on a spontaneous speech subset of the 
OGI Multilingual Telephone Speech Corpus. The correlation 
coefficient between the estimated and real speaking rates 
(evaluated in term of vowel-per-second rates) is 0.84 on 
average among the 6 languages for which a phonetic 
transcription is available (English, German, Hindi, Japanese, 
Mandarin and Spanish). 

1. Introduction 

Most of automatic speech processing systems have to cope 
with the variability of Speaking Rate (hereunder SR) and its 
consequences both on segmental units and supra-segmental 
organization of speech. Applications range from speaker 
adaptation of automatic speech recognition systems to 
automatic modeling of rhythm or prosody in a typological or 
language identification perspective. 

Obviously, due to the intricate notion of speaking rate, 
many theoretical and practical problems arise. To sum up, let 
say that SR may be defined in several ways (which recurrent 
unit should be taken into account? Is it language independent? 
etc) and that its variability results from complex interactions 
(it depends on speaker, maybe language, and it may vary 
during the discourse). See Ramus [9, 10] for a more complete 
discussion on SR in a cross-linguistic view and Morgan & 
Fosler-Lussier  [4] for a method combining phone level and 
syllable level estimators. 

In a previous work  [7], we developed a rhythmic unit 
model for language identification. This algorithm reached 
pretty good results on a read speech corpus. However, it 
seemed obvious that speaking rate normalization would have 
been the bottleneck to overpass before considering 
spontaneous speech. The following of this paper focuses on 
SR measurement on a multilingual spontaneous speech corpus 
and on using a vowel detection algorithm as a predictor of the 
SR. These methods are discussed in Section 2. Section 3 
presents the corpus and statistics related to SR. The results are 
given in Section 4 while the final section summarizes the 
findings and discusses perspectives. 

2. Methods 

2.1. Defining Speaking rate 

The notion of SR is linked to the notion of rhythm and 
generates the same kind of problems, since they both involve 
the counting of some pattern per second. Some argue that 

syllable is the right unit while others oppose that the universal 
relevancy of syllable is not assessed and that phonemes may 
be better candidates. Still, Pfitzinger showed in  [8] that 
syllable rate is more correlated to perceptual speaking rate 
than phone rate (r=0.81 vs r=0.73). 

Selecting which pattern is the relevant one is beyond the 
range of this paper and we may consider that SR calculated in 
terms of syllable or phoneme rates are correlated ( [8] for 
german: r=0.6), at least in normal rate speech. The level of the 
correlation is probably higher for languages with simple CV 
syllable structure than for languages allowing more 
consonantal cluster complexity. At fast speaking rates, 
language dependent strategies may also interact (see  [9] for a 
study of the impact of the speech rate on the temporal 
organization of speech in term of vowel quantity and of 
variance of consonantal cluster durations). 

As a consequence, the observed SR results from 
interactions between speaker dependent and language 
dependent factors. Following Ramus  [9], we consider that 
studying large corpora will lead to a better comprehension of 
the respective contribution of each factor. At this moment we 
propose to define the SR as the number of vowels per 
second, which is a good estimation of the number of syllables 
per second. This way, vowel detection may be done in a 
language independent manner (see below) and provide an 
estimator of it, whereas syllable detection may involve 
language dependent syllabation strategies. 

2.2. An Algorithm for Speaking rate Evaluation 

The vowel detection algorithm has been already described in 
 [6]. It is based on a statistical segmentation combined with a 
spectral analysis of the signal. It is applied in a language and 
speaker independent way without any manual adaptation 
phase. Classical errors are omissions of low energy or 
devoiced vowels and insertions of R-like sounds. 

3. Experiments 

3.1. Corpus 

Experiments are performed using a subset of the OGI 
Multilingual Telephone Speech Corpus  [5] for which a hand-
made phonetic transcription is provided. Table 1 gives the 
characteristics of the database. For each speaker, one excerpt 
lasting about 40 seconds is phonetically labeled and tagged as 
‘spontaneous’ or ‘read’. This tagging is missing for Hindi. For 
the other languages, most of the excerpts are considered 
“spontaneous” and the size of the corpus ranges from 64 
excerpts for Japanese to 144 for English.  
 



Table 1: Corpus Description. Number of speakers is 
given with the number of speakers considered as 

“spontaneous”. Statistics about the excerpt duration 
(mean and standard deviation) are also given. 

Language Number of speakers 
(spontaneous speech) 

Mean duration per 
speaker (std) 

English (EN) 144 (111) 47.1 (3.4) 
German (GE) 98 (89) 42.7 (8.4) 
Hindi (HI) 68 (n.a.) 46.5 (6.0) 
Japanese (JA) 64 (55) 46.1 (5.1) 
Mandarin (MA) 69 (69) 39.9 (10.7) 
Spanish (SP) 108 (106) 45.6 (5.6) 

3.2. Conventions and Speaking Rate Calculation 

The labeling conventions developed at CSLU  [3] rely on 
language independent rules adapted to each target language 
for the phoneme list. Phonemic boundaries are set with a 
precision of one millisecond. By convention, diphthongs are 
considered as one vowel in the SR calculation. 

Since non speech events are also labeled on these data, it 
is possible to take them, and especially silent pauses, breaths, 
etc. into account for the computation of the actual SR. 

Let u be the utterance for which the SR is computed. Let 
NV(u) be the number of vowel segments labeled along this 
utterance and D(u), the duration of the utterance. The mean 
Speaking Rate along the utterance SR(u) is thus defined as: 

)(

)(
)(

uD

uN
uSR V=

 
(1) 

Considering Dns(u), the total non speech duration in u, the 
mean SR unbiased by the pauses is  

( ))()(

)(
)(

uDuD

uN
uSR

ns

V
ns −

=
 

(2) 

This global measurement of the SR is obviously limited 
since it underestimates the impact of local SR variation during 
the speech production (see Section 4.2). 

The vowel detection algorithm provides an estimation of 
the actual number of vowel present in the waveform. It thus 
provides an estimate of SR(u) :  
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3.3. Cross-linguistic comparison 

Table 2 displays the mean SR and SRns computed for each 
language of the database. The lowest mean SR is reached for 
Mandarin (3.0) while the fastest rate is Japanese one (4.9 but 
see Section 4.1). 

Table 2: Mean and standard deviation values 
computed in term of hand-labeled vowels per second.  

Language Mean SR with pauses 
(± CI) 

Mean SR no pauses 
(± CI) 

EN 3.8 (± 0.11) 5.0 (± 0.09) 
GE 3.6 (± 0.11) 5.0 (± 0.12) 
HI 3.7 (± 0.16) 5.7 (± 0.14) 
JA 4.9 (± 0.25) 7.0 (± 0.19) 
MA 3.0 (± 0.19) 4.7 (± 0.16) 
SP 4.2 (± 0.14) 6.0 (± 0.13) 

This rating persists whether pauses are discarded or not. 
English and German exhibit very similar SRns rates that may 
be linked to their nearby rhythmic structure. 

The significant differences (ANOVA performed with 
SPSS, F(5)=129, p<.0001) observed among languages 
confirm that SR is also linked to the language rhythmic 
structure and not only speaker characteristics. For example, 
the canonical Japanese syllable structure is CV, while English 
or German allow complex CCC clusters on attack. 

4. Results 

4.1. Speaking rate Estimation 

Results are given in Table 3, both in terms of correlation 
coefficients and of linear regression (computed with SPSS) 
and illustrated on Figure 1 (see last page). All correlations are 
highly significant (p<.0001). The worst correlation is reached 
with German, but it’s still pretty high. It may be explained by 
the slope revealed by the linear regression (0.63) that means 
that a significant amount of false alarms occur. For Japanese, 
on the opposite, the number of vowels seems to be 
underestimated (slope equals 1.14). This value is due to a bias 
introduced by the hand-labeling procedure during which 
phonemic long vowels are labeled as two successive segments. 
Merging these two segments in one unique vowel leads to 
mean SR of 3.9 (SRns = 5.4), R coefficient of 0.89 and a linear 
regression equation more conventional: y = 0.92x + 0.78. 

Table 3: Correlation and linear regression between 
the estimate and real SRs. 

Language R R² Linear regression 
EN 0.82 0.67 y = 0.89x +  0.65 
GE 0.73 0.54 y = 0.63x +  1.43 
HI 0.91 0.83 y = 0.94x +  0.59 
JA 0.88 0.78 y = 1.14x + 1.08 
MA 0.88 0.77 y = 0.98x +  0.20 
SP 0.84 0.71 y = 1.00x +  0.74 
Mean 0.84 0.71 - 

4.2. Discussion 

The automatic vowel detection algorithm provides a pretty 
good way to estimate the mean SR. However, several 
parameters may influence the precision of the prediction. 

First, it appears that considering a SR averaged along the 
excerpt may be problematic, especially when the speaking 
rate is widely varying along the utterance and obviously 
because of the presence of pauses. 

Figure 2 displays an example of this effect where the 
curve of the number of vowels as a function of time (both in 
term of hand-labeled and detected vowels) is non linear. On 
this picture, two major pauses (from about 26s to 31s and 
from 32.5s to 43s) alter dramatically the estimation of the SR. 

Other effects are more difficult to predict. For instance, 
Figure 3 displays the same kind of curves as in Figure 2 for 
two English speakers (call4 and call93) with very different SR 
(resp. 3.8 and 6.9). In each case, the red line corresponds with 
the detected vowels and the black line with the actual vowels. 
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Figure 2: Example of the evolution of the number of 
vowels per second (black line: hand labeled; red line: 

detected) for a German speaker (call145). 

Call4 is an example of correct vowel detection; even if a 
few vowels are omitted the two curves tend to be almost 
parallel, and on average, the mean SR will be correctly 
estimated. The result is quite different with call93: The 
detection algorithm regularly missed vowels and consequently 
the estimated curve drifted away from the theoretical one 
resulting in an underestimation of the SR for the utterance. 
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Figure 3: Comparison of the automatic detection of 
vowel (red lines) with the hand-labeled phonetic 

transcription (black lines). Two speakers, a very fast 
one (bold lines, SR = 6.9) and a more standard one 

(thin lines, SR = 3.8) are represented. 

Despite these limitations, these first results indicate that 
the automatic vowel detection may be an efficient way to 
estimate the SR. Furthermore, combining this approach with 
an efficient Speech Activity Detector may lead to a correct 

estimation of the real duration of the speech excerpt and thus 
to a better SR estimation. 

5. Conclusions 

As a conclusion, the speaking rate detector performs well on 
all studied languages (on average, R = 0.84). Correlation is 
quite good, especially for Hindi. It means that this approach 
may be useful to adapt a system to a specific speaking rate 
and to accomplish a basic normalization for prosodic 
modeling purposes. However, it is still necessary to evaluate 
the specific impact of the SR on either vowels or consonants 
(e.g. see  [1]). 

Going further with the estimation of the local Speaking 
Rate in term of number of vowels per effective second of 
speech implies to use an efficient Speech Activity Detector 
and last but not least, to detect filled pauses as well. For this 
purpose, taking advantage from the statistical segmentation 
we already use is planned. 

6. Acknowledgements 

This research is supported by the French Ministère de la 
Recherche (program ACI “Jeunes Chercheurs”). 

7. References 

[1] Crystal, T. H.; House, A.S; 1990. Articulation rate and 
the duration of syllables and stress groups in connected 
speech, JASA, 88(1), 101-112 

[2] Dellwo, V; Wagner, P; 2003. Relations between language 
rhythm and speech rate. ICPhS 03, Barcelona, Spain 

[3] Lander, T.; Hieronymus, J. L.;,1997, "The CSLU labeling 
guide", Technical Report, Center for Spoken Language 
Understanding, Oregon Graduate Institute 

[4] Morgan, N; Fosler-Lussier, E., 1998. Combining Multiple 
Estimators of Speaking Rate. IEEE ICASSP-98, Seattle, 
729-732. 

[5] Muthusamy Y. K.; Cole, R. A.; Oshika, B. T., 1992, "The 
OGI multilanguage telephone speech corpus", Proc. of 
ICSLP, p. 895-898 

[6] Pellegrino F.; André-Obrecht R., 2000, "Automatic 
Language identification: an alternative approach to 
phonetic modeling", In Signal Processing, 80, p. 1231-
1244, Elsevier Science 

[7] Pellegrino, F.; Chauchat, J.-H.; Rakotomalala, R.; 
Farinas, J.,2002, "Can automatically extracted rhythmic 
units discriminate among languages?" In Proc. of 
International Conference on Speech Prosody, p. 563-566. 

[8] Pfitzinger, H., 1998. Local speaking rate as a 
combination of syllable and phone rate. In Proceeding of 
ICSLP 1998. 

[9] Ramus, F., 2002, "Acoustic correlates of linguistic 
rhythm: Perspectives", In Proc. of International 
Conference on Speech Prosody 

[10] Ramus, F.; Nespor, M.; Mehler, J., 1999, "Correlates of 
linguistic rhythm in the speech signal", Cognition, 73(3), 
p. 265-292 

 



 
English German

Hindi Japanese

Mandarin Spanish

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

English German

Hindi Japanese

Mandarin Spanish

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

0 2 4 6
0

2

4

6

SR (nbV/s)

S
R

(n
bV

/s
)

 

Figure 1: Correlation between the estimated SR (X-axis) and actual SR (Y-axis) for the six languages. Each cross 
corresponds with a different speaker and the plain line is the SRSR = SRSR =  line. 

 


